3 research outputs found

    High-throughput intensity diffraction tomography with a computational microscope

    Full text link
    We demonstrate a motion-free intensity diffraction tomography technique that enables direct inversion of 3D phase and absorption from intensity-only measurements for weakly scattering samples. We derive a novel linear forward model, featuring slice-wise phase and absorption transfer functions using angled illumination. This new framework facilitates flexible and efficient data acquisition, enabling arbitrary sampling of the illumination angles. The reconstruction algorithm performs 3D synthetic aperture using a robust, computation and memory efficient slice-wise deconvolution to achieve resolution up to the incoherent limit. We demonstrate our technique with thick biological samples having both sparse 3D structures and dense cell clusters. We further investigate the limitation of our technique when imaging strongly scattering samples. Imaging performance and the influence of multiple scattering is evaluated using a 3D sample consisting of stacked phase and absorption resolution targets. This computational microscopy system is directly built on a standard commercial microscope with a simple LED array source add-on, and promises broad applications by leveraging the ubiquitous microscopy platforms with minimal hardware modifications

    High-throughput intensity diffraction tomography with a computational microscope

    Full text link
    We demonstrate a motion-free intensity diffraction tomography technique that enables direct inversion of 3D phase and absorption from intensity-only measurements for weakly scattering samples. We derive a novel linear forward model, featuring slice-wise phase and absorption transfer functions using angled illumination. This new framework facilitates flexible and efficient data acquisition, enabling arbitrary sampling of the illumination angles. The reconstruction algorithm performs 3D synthetic aperture using a robust, computation and memory efficient slice-wise deconvolution to achieve resolution up to the incoherent limit. We demonstrate our technique with thick biological samples having both sparse 3D structures and dense cell clusters. We further investigate the limitation of our technique when imaging strongly scattering samples. Imaging performance and the influence of multiple scattering is evaluated using a 3D sample consisting of stacked phase and absorption resolution targets. This computational microscopy system is directly built on a standard commercial microscope with a simple LED array source add-on, and promises broad applications by leveraging the ubiquitous microscopy platforms with minimal hardware modifications

    A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates

    No full text
    The foodborne pathogen Listeria monocytogenes (Lm) is a highly heterogeneous species and currently comprises of 4 evolutionarily distinct lineages. Here, we characterize isolates from severe ovine listeriosis outbreaks that represent a hybrid sub-lineage of the major lineage II (HSL-II) and serotype 4h. HSL-II isolates are highly virulent and exhibit higher organ colonization capacities than well-characterized hypervirulent strains of Lm in an orogastric mouse infection model. The isolates harbour both the Lm Pathogenicity Island (LIPI)-1 and a truncated LIPI-2 locus, encoding sphingomyelinase (SmcL), a virulence factor required for invasion and bacterial translocation from the gut, and other non-contiguous chromosomal segments from another pathogenic species, L. ivanovii. HSL-II isolates exhibit a unique wall teichoic acid (WTA) structure essential for resistance to antimicrobial peptides, bacterial invasion and virulence. The discovery of isolates harbouring pan-species virulence genes of the genus Listeria warrants global efforts to identify further hypervirulent lineages of Lm.ISSN:2041-172
    corecore